Ch8 Inverse Scattering Problems
Reference: Weng Cho Chew, Waves and Fields in Inhomogeneous Media, | EEE Press, 1994
8.1 Inverse problem

Inverse problems are quite important in many problems in physics. In general, inverse problem is a technique where we
estimate physical parameters from measured data sets, which cannot directly measure the physical parameters, but it

measures the parametersindirectly.  The condition can be mathematically expressed as:

g(y) =L(f(x))+n (8.11)

where f(X)isaphysica parametersto be estimated, g(Y) is the measured data set, L isthe operator which correlate

the physical parameters to the measurable data set and nis the random noise. Here, the operator L and measured data
g(X) is known, then the inverse problem estimates the parameters g(X) .

There are many examples of inverse problems in geophysics and medical engineering. Most of the geophysical
explorations are inverse problems, where the sensors can be put on the ground surface and we estimate the location of
mineral resources such as oil. Medical check by a doctor is also one kind of inverse problems, where the doctor measure
or observe the patient from outside the body, and estimate the origin of the disease. In remote sensing, radar system is
equipped on a space craft or an airplane, and measures the radar signal reflected from the objects on the ground surface.

We will estimate the ground surface condition form the radar echo, so it is aso one kind of inverse problems.
8.2 Green’sfunction

The Green’s function of a wave equation is the solution of the wave equation for a point source. Once the Green's
function is found, the solution due to a general source can be obtained by the principle of superposition. For example, to

obtain the solution to the scalar wave equation:

(V2+K*)P(r)=s(r) (821

we first find a solution to the following equation:
(V2+K?)g(r,r)==o(r -1') (8.2.2)

Since an arbitrary source S(r) isgive by:

s(r) = jdr's(r')&(r -r') (8.2.3)

we can obtain the solution to (8.2.1) by using (8.2.2) and (8.2.3) as:

Y(r)= —J' drg(r,r')s(r') (8.2.4)

The green’s functions for simple cases can be found. For example, in homogeneous medium, the solution of (8.2.2) is
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given as.

— jK|r-r'|

a(r,r')=9g(r-r)y=——— (8.2.5)
4rc|r -1

8.3 I nver se Scattering Problems

In (8.1.1), L can be any kinds of operators, but it is normally determined by a physical theory, such as heat transfer or

diffusion equations. When the operator L is related to wave propagation, the problem is called inverse scattering

problems. Therefore, the inverse scattering problems include various problems related to electromagnetic wave, acoustic

wave and elastic wave propagation, scattering and refraction.

As an example of the operator L, now we think about a scalar
wave case. The scalar wave equation is given as:

[VZ+K2(r) |@(r) =q(r) (831)

where ——

k2(r) = a)zﬂ(r)g(r) (8.3.2) gb , lle /'; elr), e (r]

represents an inhomogeneoius medium over the finite volume

and H‘\"‘-h--‘_

k? =k? = 0’8, (8.3.3)

outside V.

Next we define a Green's function satisfying
[V2+kh2]g(r,r')=—5(r—r') (8.3.3)

Then (8.3.1) can be rewritten as

[V2+KZ]p(r) =a(r) [ k() -k Jg(r) (834

Note that the right-hand side of (8.3.4) can be considered as an equivalent source. Then,

#(r)==[dv'g(r,r)ar)+[dv'g(r,r) k() -k J¢(r) (835)

Thefirst term in the right-hand side is just the field due to the source in the absence of the inhomogeneity, and hence, is

theincident field. Therefore, (8.3.5) can be rewritten:

p1) =g+ AV g(r [P -K Jp(r)  838)

In this formulation, we can measure the scattered field ¢(r)in the area outside the volumeV , and estimate the

unknown parameter K(r) .



8.4 Linear |nverse Problems

We rewrite (8.3.6) as

E(r)=E,_(r)+ j dr'G(r,r)-O(NE(r) (841

where

O(r) =k*(r)—k;

(8.4.2)

isthe physical parameter to be estimated.

It should be noted here that in (8.4.1)
the field E(r) which should be
measured is included both in the
left-hand term and in the integral.
Therefore, the operator L defined by
(8.4.1) for E(r) isafunctiona of the
unknown O(r)to be estimated. This
means, the operator is not linear for the
unknown, and this is a nonlinear
equation. In other words, if the
equation is linear, the scattered field
E(r) can be expressed as a

superposition of the scattered wave

Scatterimg
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Figure 9.1.1 An example of an inverse scattering experiment,

caused by each O(r), theniit is proportional to O(r).

The nonlinear dependency of the
scattered field on O(r) is due to the
mutual interactions between the
induced polarization currents. If the
scattered field form two isolated
scatterers are known, the total
scattered field is not a linear
superposition of the isolated
scattered field as shown in Fig.9.1.2.
The multiple scattered fields have to
be considered, it causes the

nonlinearity of the problem.

Figure 9.1.2 Multiple scattering between scatterers gives rise to non-
linearity in the inverse problem which preclude the use of linear su-
perpaEitions.

However, if we can approximate the problem as a linear problem, we can treat the inverse problem more easily. Thisis

called “linearization” of a problem. There are severa conditions, where the problem can be liberalized. For example, in
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“Born approximation”, the amplitude of the scattered field is linear, whereas, in “Rytov approximation”, the phase
perturbation is alinear function of objects. Furthermore, another way of obtaining aliberalized relationship between data
and the objects is to use high-frequency waves. High-frequency wave propagates in a ray-like manner and with the

ray-optics approximation, the relation can be approximately linearlzed. X-ray is such an example.
8.5 Back-Proj ection tomogr aphy

The back-projection tomography algorithm is particularly useful when the measured phase or attenuation is linear
function of the object, for instance, as in X-ray. The phase shift and attenuation of wave as it propagates through an
inhomogeneous medium at high frequency can be given by:

—jwj].s(z')dz‘
e ° (85.1)
The slowness S(Z)is complex if the medium is lossy. In X-ray, we measure only the attenuation, and in ultrasound

tomography, we measure only the delay of pulse through a body. This delay can be give by:
b

T= I s(z)dz" (85.2)
a

In both cases, we can assume that the ray propagates along a straight pass, and this assumption stands when the

inhomogeneity of the medium is weak.

If the object is described by its slowness or attenuation profile S(X, Y) , asingle experiment then yields

0

P(y)= [ s(x,y)dx' (853

where
where (X',y') are the coordinates of the experiment shown in Fig.9.1.3. P(y)is the projection of the function

S(x',¥") .(8.5.3) can be related to two-dimensional Fourier transformation as

1 ) 1 ] 1 = jK, IX"jk 'y‘ 1 r
s(x',y") = dk 'dk ‘e Sk Lk ) (85.5)
(272_)2 J.J. kX Yy y
Then
) ¥
P(y) = 1 S j dk, 'e "’'S(0,k, ) (85.6)
(27) = : (N 2
Hence, froma single projection, a dice of the - ! \""‘"--.K
Fourier transform of S(X,Y),i.e, S(X,y")at : d £y e
k,'=0, is derivable by inverse Fourier - {
transforming (8.5.6). This is known as the ', 5‘ J,ul'f "

projection-slice theorem. Consequently, ~ \_-//

S(0,k, ") = ]Ody'e“'kv'y'P(y') (85.7)

Figure #.1.3 A projection tomography measurement scheme.
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To get adifferent slice of the Fourier transform, we need only perform the experiment at a different angle. Therefore, by

performing the experiment with angles ranging from0°t0180°, S(k,, K, ) will befilled out in the whole Fourier space.
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Figure 9.1.4 The object in real space and in Fourler space. A pro-
jection, Ply') = [ s(z",3")dx" is related to S{D, k] ], & slice in Fourier
Epace,

8.6 Diffraction tomography

In projection tomography, we assumed that the wave propagates as straight line ray. However, it is no longer true at
longer wavelengths, where diffraction phenomenon is important. Consider a transmitter-receiver configuration as shown
in Fig.9.1.5. The scattered field using the first-order Born approximation in a cylindrical coordinate is then:

bea(P2) = [ 4" 9(Pr: £)O(P Ve () (86.1)
EE&N'*-_ -_--ﬂ—-____";l:i"rll'nillep
Py e P

Figure 8.1.5 A frapsmitter-receiver measurement in diffraction fo-
mography.

where two-dimensional scattering is assumed and O(p") = k* —kZ, is the object to be reconstructed. Moreover, in two

dimensions, the Green’s function is

9(pr.p) = _741 H(()Z) (K |pR _pl|) (8.6.2)

But the receiver isin the far field of the scatterer, then approximately,



n_ "l 2 ikopet o
(P p) = |———e s (g3
® 4 _J”kopR

Also, an incident field generated by a uniform line source is

() = HP (|0 i) €64

and if the transmitter isalso in the far field of the object we have

sl A B T
Gne(p) = . g oot lorr (8.6.5)
4 \ - jrkypr

Finally, after defining K = K,pg andk; =—Kk,p,; and substituting the above into (8.6.1) we have
_ _j — ko (or +PR) ' A (Kg—Kr)-p' L L
boa(P) =——— e W) [ O (p)  (866)
87Ko~/ Pr PR J

Note that now, the integral is a Fourier-transform integral. Consequently,

_ —J
¢sca (pR) 87z'k0 [—pT pR

whereO(K) is the Fourier transform of O(p) . Therefore, the scattered field under the Born approximation is related to

g Mol Q(k, — k) (8.6.7)

the Fourier transform of the object.

Observe that the length of the vector kpand k. areequal to k. Hence, k,—K, or the argument of O, can only

span a finite space in the Fourier space. For instance, if K, is fixed and the receiver is moved around so that Ky
change directions, then the locus swept out by K, —K; is as shown in Fig. 9.1.6. Furthermore, if the transmitter is

moved around so that K, changes directions aswell as K, then the combination of varying the directions of Kk and

k, sweepsout alarger circleof radius 2k, witharea 47k;.
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Figure 9.1.6 Locus awept out by kg — ky for a fixed ke and vArying
ks



It should be noted that we can acquire the Fourier spectrum of O(k) only for |k| <k, , only alow-pass version of

O(K) isretrieved in this reconstruction.

It is interesting to note that when the frequency becomes very high, the locus of K, —K; passes through the origin
almost like a straight line, as shown in Fig. 9.1.6. This means, that we can understand that the projection tomography
using the projection-slice theorem is a specia case of diffraction tomography. Hence, in the high-frequency limit, we

need only a sweep of receiver with asmall angle, and a straight-line slice in the Fourier space is recovered.

Figure 9.1.7 The limit when diffraction tomography becomes pro-
jection tomography.

8.7 Finite-Sour ce Effect

In the previous section, we used a farOfield approximation. The far-field approximation is valid only when
pr>ppa>p' (8.7.1)

or the transmitter and the receiver are far from the size of the scatterer. However, it is not true for many GPR
measurements. If we do not use the far-field approximation, (8.6.4) can be expanded by using a plane wave expansion of

Hankel function, we have:

N 1k eox)-ikyy-ve|
=— | dk —e y 8.7.2
B (0) . L oy (87.2)

Similarly, the Green's function can be represented as:

' P I 1 » 'Xfo‘*' | - |
9(p.p)=— [ ok, e il =)=y o=y (8.7.3)
—0 y

il
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Consequently, substituting (8.7.2) and (8.7.3) into (8.6.1) we have:



0

¢sca(pRlpT) — 16_12 J. ?(kx J C:<kx' e—jkx‘xR+jkxxTJ‘dX.dyve*i(kx*kx')X'*J'ky"Y'*YT‘*Jky"YR*Y"O(Xv’ yl) (8.7.4)
T

—o Y o Y

Note that the scattered field is a function of both the transmitter and the receiver positions. But in forward scattering
experiments, y'>Yy,; and Y, >Y' sothat themodulussignsin (8.7.4) can be removed to arrive at

“1 0K, AR ey ot Ty et e X Ok Yy
¢sca(pRlpT):16ﬂ_2 J. kxj kx' e Jke"Xr— Ky "Yr— Tk + Ky ¥ J‘dx dy e J(ke=ky )x'=j(ky ky)yO(X,y) (8.7.5)
—00 y

y —o

Now, if @, (pr,P;) ismeasured dong alinein the x direction, with the transmitter also aligned in the x direction as

shownin Fig. 9.1.8, we can transform @, (pg, o;) inthe X; and X, variablesto obtain

1 efjk'yymkny

¢sca(k>l<l le_kx7 yT) =

—  O(-k +k,-k +k 8.7.6
4 kyky ( x+ X y+ y) ( )

In this case, the Fourier transform of the measured field is related to the Fourier transform of the object 0.

From (8.7.6), note that one cannot make much use of the evanescent spectrum corresponding to the case when ky and
k," arepurely imaginary. This happenswhen k, >k, and K> K,, as seen from the dispersion relationships

ki +k=k; and ki +k? =kg. Therefore, it is reasonable to assume that the direction of k and k' only sweep

from 0°to 180°. Since O isafunction of k' -k, the locus swept out by K' -k with varying k' for afixed k
is as shown in Fig. 9.1.9. Therefore, a forward scattering experiment alone is not enough to reconstruct the object well

since the data in the spectral domain is not complete. Neverthel ess, a band-limited reconstruction is possible.
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Figure 9.1.8 The Anite-source effect in diffraction tomography.



On the other hand, if a back scattering experiment is performed instead, only the sings of k;, in (8.7.6) need to be

changes. In this case, the area swept out by k' -k includes asemicircular aswell in the lower half kk, plane. Tofill
out afull circle, the experimental setting is rotated so that the two discs sweep out acircle of radius 2k, . Alternatively,

the transmitters and receivers can be switched to sweep out afull circle on the kxky plane. In this matter, more Fourier

data can be collected in the Fourier space.
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Figure 9.1.9 Locus swept out in the k-space in a forward and back-
ward scattering experiment only.



